Multiple slow waves and relevant transverse transmission and confinement in chirped photonic crystals.
نویسندگان
چکیده
The dispersion properties of rod-type chirped photonic crystals (PhCs) and non-channeled transmission in the direction of the variation of structural parameters from one cell of such a PhC to another are studied. Two types of configurations that enable multiple slow waves but differ in the utilized chirping scheme are compared. It is demonstrated that the multiple, nearly flat bands with a group index of refraction exceeding 180 can be obtained. For these bands, transmission is characterized by multiple narrow peaks of perfect transmission, strong field enhancement inside the slab, and large values of the Q-factor. Among the bands, there are some that show negative phase velocity. Symmetry with respect to the slab mid-plane must be kept in order to obtain constructive interferences that are necessary for reflection-free transmission. It is shown that 15 and more slow wave bands can be obtained in one configuration. The corresponding transmission peaks are well separated from each other, being the only significant feature of the transmission spectrum, while the Q-factor can exceed 10⁵. The observed features are preserved in a wide range of the incidence angle variation. They can be used for tuning the locations and spectral widths of the transmission peaks. Some comparisons with the chirped multilayer structures have been carried out.
منابع مشابه
A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)
Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...
متن کاملPolarizing beam-splitter based on defective photonic crystals
The performance of a polarizing beam splitter based on the one-dimensional photonic crystals (1D-PCs), is theoretically investigated. The polarizing beam splitter consists of a symmetric stack of the low-index quarter-wave plates and the high-index half-wave plates with a central defect layer of air. The linear transmission properties of the polarizing beam splitter are numerically simulat...
متن کاملAnalytical Investigation of TM Surface Waves in 1D Photonic Crystals Capped by a Self-Focusing Left-Handed Slab
In this paper, the localized TM surface waves of a nonlinear self-focusingleft-handed slab sandwiched between a uniform medium and a one-dimensionalphotonic crystal (1D PC) is analytically investigated. Our method is based on the firstintegral of the nonlinear Maxwell's equations. For the TM surface waves, the presenceof two electric field components makes the analysis difficult. Therefore, we ...
متن کاملInvestigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures
In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect and waveguiding behavior of electr...
متن کاملInfluence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals
In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2014